Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 7, 2026
-
Green hydrogen, produced using renewables through electrolysis, can be used to reduce emissions in the hard-to-abate industrial sector. Efficient production and large-scale deployment require storage to mitigate electrolyzer degradation and ensure stable hydrogen supply. This paper explores the impacts and trade-offs of battery and hydrogen storage in off-grid wind-to-hydrogen systems, considering degradation of batteries and electrolyzers. Utilizing an optimization model, we examine system performance and costs over a wide range of storage capacities and wind profiles. Our results show that batteries smooth short-term fluctuations and minimize electrolyzer degradation but can experience significant degradation resulting from frequent charge/discharge cycles. Conversely, hydrogen storage provides long-term energy buffering, essential for sustained hydrogen production, but can increase electrolyzer cycling and degradation. Combining battery and hydrogen storage enhances system reliability, reduces component degradation, and reduces operational costs. This highlights the importance of strategic storage investments to improve the performance and costs of green hydrogen systems.more » « lessFree, publicly-accessible full text available January 7, 2026
-
Abstract Electric utilities are considering replacing their coal power plants with renewables and energy storage to reduce emissions. However, they have also expressed concerns about operational changes and system reliability brought by these replacements. Utilities in remote rural areas face more challenges as they also face energy insecurity while having limited interconnections to wider systems and reliance on imported fuels. Therefore, it is critical for remote utilities to understand different coal replacement approaches and their impacts on system expansion, operation and energy security. In this paper, we define and investigate three approaches to replace coal using wind and batteries: (1) replacing exact coal generation, (2) replacing at least coal generation, and (3) replacing total energy provided by coal. We develop a case study inspired by the small remote grid in Fairbanks, Alaska, which has a single limited interconnection with the grid south of it. We utilize a power system expansion and economic dispatch model that co-optimizes the capacities of wind and batteries required for each approach and the hourly dispatch of energy and reserves for one year. We further analyze the operational cost variability under fixed and fluctuating fuel prices. We find that replacing the exact coal generation requires minimal operational changes, but also significantly more wind and battery capacities. In contrast, replacing total energy provided by coal induces more cycling in other resources, challenging grids with limited flexibility-providing resources. However, replacing total energy provided by coal allows more generation variability in response to fuel price fluctuations, enhancing energy security.more » « less
An official website of the United States government
